Delta function definition boardwork

$$
\begin{aligned}
& \delta(t)=\lim _{\Delta t \rightarrow 0} \begin{cases}1 / \Delta t & \text { if }-\Delta t / 2<t<\Delta t / 2 \\
0 & \text { otherwise }\end{cases} \\
& \delta\left(t-t_{i}\right)=\lim _{\Delta t \rightarrow 0} \begin{cases}1 / \Delta t & \text { if } t_{i}-\Delta t / 2<t<t_{i}+\Delta t / 2 \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

"Spile at time t_{i} "

$$
\int d t \delta\left(t-t_{i}\right)=\Delta t \cdot \frac{1}{\Delta t}=1 \quad \text { (rectangle area) }
$$

Any interval containing t_{i}
Spike train: $\rho(t)=\sum_{i=1}^{n} \delta\left(t-t_{i}\right)$

* spiles in $\Delta T=\int_{0}^{\Delta T} p(t) d t$

So... An estimate of rate $=\frac{\# \text { spines in } \Delta T}{\Delta T}$

$$
r=\frac{1}{\Delta T} \int_{0}^{\Delta T} \rho(t) d t \quad \text { or... Time - } \quad r(t)=\frac{1}{\Delta T} \int_{t}^{\text {Dependent }}<t\left(t^{\prime}\right) d t^{\prime}
$$

Modeling a spike train as a Poisson Process:
Divide time axis into BINS of width DE [N.B. different use of ot than for $\delta g=$ definite $]$

Rate r. So... Spike in each bin with probe. r. $\Delta t=p$
Put 1 if spike, 0 otherwise

Generating (samples of) Binary (O/1) randan vanables in MATAB.

Basics of Prosabiuing... following. Cox't Cabbiani Ch. II
def' Ransom variable: object x defined by:

1) Let of possible values (or states) $\left\{a_{1}, \ldots, a_{N}\right\}$
2) probability distribution defined over sample space
dIff DASCRETE RANDOM YARMABLE: RAndan variable with DUCRETE values
def: Realization: randan assigument of k to are of its, with specified probablitues

WİRPRETHIIN: For discrete randan var. probe $p_{i}\left(a_{j}\right)$

- Coin tossing and binary-valwed random lariabces:

PRobnikites:
values $\left\{a_{1}, a_{2}\right\}$

$$
=\{1,0\}
$$

$$
\begin{aligned}
P(x=1)=p ; P(x=0) & =(1-p)
\end{aligned}
$$

FAIR con: $p=1 / 2$,
unfair cola: $P \in[0,1]$
\rightarrow contmors-valud randan vanobles. \longleftarrow

- Sample space $=[a, b]$, Contrivous range

- proba. distributioi given by probablity densty $p(x)$:

$$
p(x \in[l ; r])=\int_{l}^{r} p(x) d x
$$

Exl Unfemly distribated sandam vaurable with range: $[0,1]$.

$$
p(x)= \begin{cases}1 & x \in[0,1] \\ 0 & \text { athenwse. }\end{cases}
$$

$$
p(x>\beta)=1-\beta
$$

Cementing R.V. in NATLABS
$\rightarrow x=$ rand \longrightarrow unif. distributed R.U. w/ vance $[0,1]$ see what neighbor got!.
\longrightarrow MATCAB generates seq. of pseudo. random vars. w/ range $[0,1]$. Huge period $>2^{1492}$

Need to... "randomize" starting point through gey.
$>\operatorname{rand}($ 'state', sum $(100 *$ clock $))$

Generating a LIST of r.v.: $\gg x$ list $=\operatorname{rand}(1, n)$

Generating binang r.v. w/ $\quad p(x=1)=1 / 2$

$$
p(x=0)=1 / 2
$$

$>x=$ round (sand)

$$
\begin{array}{r}
p(x=1)=p \\
p(x=6)=1-p \\
>x=\operatorname{round}(\operatorname{son} d+(p-1 / 2))
\end{array}
$$

Wake up for More-than-fair probe.

Brede to our example. generate-simple-spiketrain. m
[in lecture codes. website -
nsec $=1 ;$ number of seconds
$T=1 ;$ total' number of seconds
deltat $=0.001 ; 1$ use bins
$r=100$; rate (spiles per sec, Hz)
$p=s * \operatorname{deltat}$
numbius $=$ round $(T /$ delta $t)$
Spiketrain $=$ round $($ rand $(1$, numbins $)+(p-1 / 2))$
"sample"
Basic statistics of R.V. x :

Say... Have M samples (realizations), $x=5 j$ "on trial j "
$\operatorname{ulean}(x)=\mathbb{E}(x)=\langle x y=\bar{x}=$

$$
\approx \frac{1}{M} \leq s_{j}
$$

$\operatorname{Var}(x)=$ fluctuations in samples around $\langle x\rangle$

$$
\begin{aligned}
& =\mathbb{E}\left((x-\langle x\rangle)^{2}\right) \\
& \approx \frac{1}{M} \sum_{j=1}^{M}\left(s_{j}-\left(\frac{1}{M} \sum_{j=1}^{M} S_{j}\right)\right)^{2}
\end{aligned}
$$

Fact: these sample stats \rightarrow true stats $\left(\operatorname{eg}, \mathbb{E} X=\sum_{j} S_{j} p\left(s_{j}\right)\right)$ in $\lim M \rightarrow \infty$. [laws of \lg. $\#^{5}$]

Implementation in MATLAS:
given sample-list $=\left(s_{1}, \ldots, s_{M}\right)$
mean (sample-list)
$\operatorname{Var}(1)$
\longrightarrow Wean, var. of spike count across trials, in last $1 / 2$ of generate -simple - spiketrain . $m \leftarrow$

